

Tenel Sustainable Elements

Te

ENVIRONMENTAL PRODUCT DECLARATION

Low Carbon Concrete Sandwich Element

IN ACCORDANCE WITH EN15804+A2 & ISO14025 / ISO 21930

EPD HUB, EPD-1068

0

n

Publishing 8 February 2024, last updated 8 February 2024, valid until 8 August 2025

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Tenel Oy
Address	Tehontie 45, 45200, Kouvola
Contact details	jani.julin@tenel-elements.fi
Website	https://tenel-elements.fi/

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022
Sector	Construction product
Category of EPD	Design phase EPD
Scope of the EPD	Cradle to gate with modules C1-C4, D
EPD author	Elias Tukonen, Tencon Oy
EPD verification	Independent verification of this EPD and data, according to ISO 14025
	Internal certification 🗹 External verification
EPD verifier	Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Econcrete Sandwich CL
Product reference	TCL-S001
Place of production	Finland, Kouvola
Period for data	01/01/2022 – 31/12/2022
Averaging in EPD	No averaging

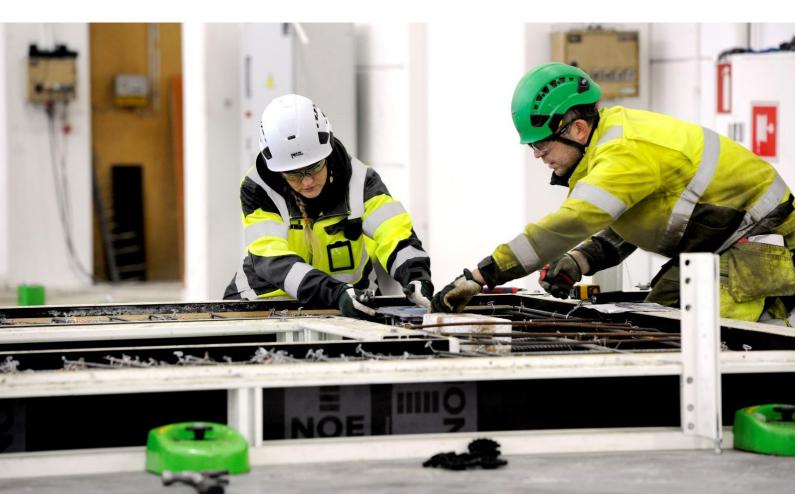
ENVIRONMENTAL DATA SUMMARY

Declared unit	1 Square meter (1 m2)
Declared unit mass	673 kg
GWP-fossil, A1-A3 (kgCO2e)	7,98E1
GWP-total, A1-A3 (kgCO2e)	7,99E1
Secondary material, inputs (%)	6,41
Secondary material, outputs (%)	80,2
Total energy use, A1-A3 (kWh)	204,0
Total water use, A1-A3 (m3e)	1,28E0

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Tenel Oy is a Finnish concrete element producer. We produce elements in a cost-effective and responsible manner and invest in environmental sustainability.


Our factory has a modern production line, and it operates in the town of Kouvola. *https://tenel-elements.fi/*

Tenel Oy is a part of the Avain Yhtiöt group. https://avainasunnot.fi/avain-yhtiot/

PRODUCT DESCRIPTION

The product is a low carbon insulated precast concrete sandwich wall element. Product calculations are made for an element with inner core thickness of 160mm, stone wool thermal insulation of 220mm and outer core thickness of 100mm. The wall element is always made to tailor the specific needs of a customer.

Further information can be found at *https://tenel-elements.fi/*

PRODUCT AND MANUFACTURER

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	3	Norway
Minerals	96	Finland
Insulation	1	Finland
Fossil materials	<0,01	Finland

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

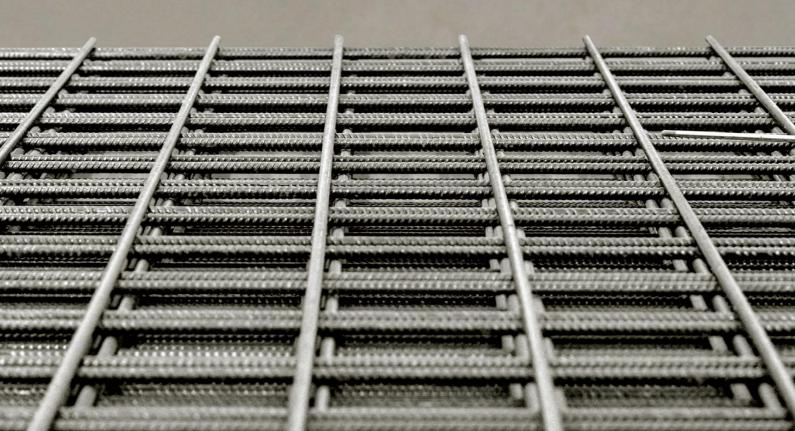
Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	Square meter (m2)
Mass per declared unit	673 kg

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1% (1000 ppm).


PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table

Product Assembly stage stage							Us	se sta	ge			Enc life s	d of tage		Beyond the system boundaries			
A1	A2	A3	A4	A5	B1	B2	В3	В4	В5	B6	В7	C1	C2	C3	C4		D	
х	х	х	MND	MND	MND	MND	MND	MND	MND	MND	MND	х	x	х	x		х	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = MND. Modules not relevant = MNR.

PRODUCT LIFE-CYCLE

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Raw materials and ready-mix concrete are transported to the factory. At the factory plywood framework is installed to the casting bed and oil is applied. Rebar, reinforcement mesh and auxiliary equipment such as lifting rings are installed to the cast in preparation for outer core casting. After the outer core has cured, insulation is attached and rebaring for the inner core is done. The inner core is then cast on the insulation.

After 36 hours the cast is removed, and the product is moved to storage. The cast is cleaned with water and the plywood framework is re-used. Product is packaged with light plastic packaging.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

These modules were not included in the scope of this EPD.

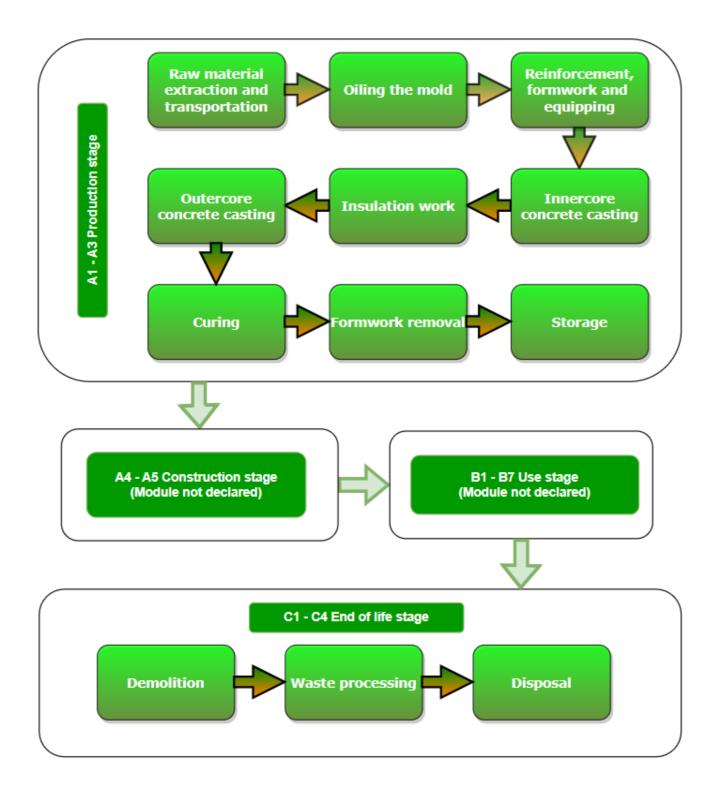
PRODUCT LIFE-CYCLE

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase. Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

At the end of service life, it is assumed that 100% of demolition waste is collected for construction waste processing. Demolition process consumes energy in diesel fuel form at an assumed rate of 10kWh / ton (C1).


The demolished concrete wall is transported to a construction waste treatment plant without mass loss. Transport distance from the demolition site to the waste processing facilities is assumed at 50km. Transport method is assumed to be a truck (C2).

At the waste treatment plant, the demolished element materials are separated to steel and concrete. From this process, we assume that 95% of steel and 80% of concrete is obtained for recycling (C3). The rest, 5% of steel and 20% of concrete, are sent to landfill (C4).

The recycled concrete (80%) and steel (95%) can be used as secondary raw materials, collecting benefit from avoiding the production of virgin raw materials.

V 149

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption.

All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	Not applicable
Ancillary materials	No allocation
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

唐

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	%

This EPD is product and factory specific and does not contain average calculations.

Tenel

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data.

0 .0

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO ₂ e	7,54E+01	2,22E+00	2,32E+00	7,99E+01	MND	0,00E+00	MND	2,23E+00	3,15E+00	6,81E+00	6,93E-01	2,51E+01						
GWP – fossil	kg CO ₂ e	7,53E+01	2,22E+00	2,32E+00	7,99E+01	MND	0,00E+00	MND	2,23E+00	3,15E+00	6,80E+00	6,92E-01	2,51E+01						
GWP – biogenic	kg CO₂e	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
GWP – LULUC	kg CO ₂ e	3,68E-02	8,32E-04	6,04E-03	4,36E-02	MND	0,00E+00	MND	2,22E-04	1,16E-03	5,44E-03	6,54E-04	-1,38E-03						
Ozone depletion pot.	kg CFC ₋₁₁ e	2,12E-06	5,12E-07	3,13E-07	2,95E-06	MND	0,00E+00	MND	4,76E-07	7,25E-07	1,47E-06	2,80E-07	7,81E-07						
Acidification potential	mol H⁺e	2,53E-01	1,08E-02	6,70E-03	2,70E-01	MND	0,00E+00	MND	2,31E-02	1,33E-02	5,78E-02	6,51E-03	9,31E-02						
EP-freshwater ²⁾	kg Pe	5,74E-03	1,74E-05	4,91E-05	5,81E-03	MND	0,00E+00	MND	7,38E-06	2,58E-05	1,61E-04	7,25E-06	9,74E-04						
EP-marine	kg Ne	3,82E-02	3,12E-03	1,94E-03	4,32E-02	MND	0,00E+00	MND	1,02E-02	3,97E-03	2,06E-02	2,25E-03	1,88E-02						
EP-terrestrial	mol Ne	9,03E-01	3,45E-02	1,96E-02	9,57E-01	MND	0,00E+00	MND	1,12E-01	4,38E-02	2,27E-01	2,48E-02	2,11E-01						
POCP ("smog") ³⁾	kg NMVOCe	2,24E-01	1,08E-02	6,32E-03	2,41E-01	MND	0,00E+00	MND	3,09E-02	1,40E-02	6,35E-02	7,21E-03	1,27E-01						
ADP-minerals & metals ⁴⁾	kg Sbe	6,66E-05	5,15E-06	7,95E-06	7,97E-05	MND	0,00E+00	MND	1,13E-06	7,39E-06	7,47E-05	1,59E-06	5,22E-04						
ADP-fossil resources	MJ	2,70E+02	3,33E+01	4,81E+01	3,51E+02	MND	0,00E+00	MND	3,00E+01	4,73E+01	1,19E+02	1,90E+01	1,92E+02						
Water use ⁵⁾	m³e depr.	3,34E+01	1,49E-01	1,35E+00	3,49E+01	MND	0,00E+00	MND	8,05E-02	2,12E-01	1,04E+00	6,02E-02	-2,71E+00						

1) GWP = Global Warming Potential;

2) EP = Eutrophication potential. Required characterisation

method and data are in kg P-eq. Multiply by 3,07 to get Po4e;

3) POCP = Photochemical ozone formation;

4) ADP = Abiotic depletion potential;

5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL IMPACT DATA

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,45E+02	3,83E-01	1,46E+01	1,60E+02	MND	0,00E+00	MND	1,71E-01	5,33E-01	5,77E+00	1,65E-01	1,58E+01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	1,45E+02	3,83E-01	1,46E+01	1,60E+02	MND	0,00E+00	MND	1,71E-01	5,33E-01	5,77E+00	1,65E-01	1,58E+01						
Non-re. PER as energy	MJ	3,98E+02	3,33E+01	4,55E+01	4,77E+02	MND	0,00E+00	MND	3,00E+01	4,73E+01	1,19E+02	1,90E+01	1,92E+02						
Non-re. PER as material	MJ	3,35E+00	0,00E+00	2,57E-01	3,61E+00	MND	0,00E+00	MND	0,00E+00	0,00E+00	-2,94E+00	-6,70E-01	0,00E+00						
Total use of non-re. PER	MJ	4,01E+02	3,33E+01	4,58E+01	4,81E+02	MND	0,00E+00	MND	3,00E+01	4,73E+01	1,16E+02	1,83E+01	1,92E+02						
Secondary materials	kg	4,32E+01	9,38E-03	1,93E-02	4,32E+01	MND	0,00E+00	MND	1,17E-02	1,31E-02	4,81E-02	3,99E-03	-1,71E+01						
Renew. secondary fuels	MJ	4,17E+01	9,04E-05	4,58E-04	4,17E+01	MND	0,00E+00	MND	3,83E-05	1,33E-04	1,09E-03	1,04E-04	2,25E-03						
Non-ren. secondary fuels	MJ	5,77E+01	0,00E+00	0,00E+00	5,77E+01	MND	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m ³	1,31E+00	4,29E-03	-2,89E-02	1,28E+00	MND	0,00E+00	MND	1,82E-03	6,13E-03	7,34E-02	2,08E-02	-1,32E-01						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	6,12E-01	4,26E-02	6,28E-02	7,17E-01	MND	0,00E+00	MND	4,01E-02	6,28E-02	2,70E-01	0,00E+00	9,49E+00						
Non-hazardous waste	kg	2,20E+01	7,00E-01	2,00E+00	2,47E+01	MND	0,00E+00	MND	2,82E-01	1,03E+00	2,00E+02	1,31E+02	3,77E+01						
Radioactive waste	kg	6,68E-03	2,24E-04	2,14E-04	7,12E-03	MND	0,00E+00	MND	2,11E-04	3,17E-04	7,81E-04	0,00E+00	-3,99E-04						

ENVIRONMENTAL IMPACT DATA

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	3,27E+00	0,00E+00	5,24E-01	3,80E+00	MND	0,00E+00	MND	0,00E+00	0,00E+00	5,40E+02	0,00E+00	0,00E+00						
Materials for energy rec	kg	2,10E-02	0,00E+00	2,40E-01	2,61E-01	MND	0,00E+00	MND	0,00E+00	0,00E+00	1,12E-02	0,00E+00	0,00E+00						
Exported energy	MJ	4,32E+00	0,00E+00	2,79E+00	7,11E+00	MND	0,00E+00	MND	0,00E+00	0,00E+00	1,88E-01	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO ₂ e	6,44E+00	2,20E+00	2,28E+00	1,09E+01	MND	0,00E+00	MND	2,20E+00	3,12E+00	6,72E+00	6,78E-01	2,36E+01						
Ozone depletion Pot.	kg CFC ₋₁₁ e	6,70E-07	4,06E-07	2,72E-07	1,35E-06	MND	0,00E+00	MND	3,77E-07	5,74E-07	1,17E-06	2,22E-07	9,78E-07						
Acidification	kg SO ₂ e	3,11E-02	8,39E-03	5,26E-03	4,47E-02	MND	0,00E+00	MND	1,65E-02	1,04E-02	4,34E-02	4,92E-03	7,62E-02						
Eutrophication	kg PO ₄ ³ e	1,24E-02	1,76E-03	2,35E-03	1,65E-02	MND	0,00E+00	MND	3,83E-03	2,36E-03	1,39E-02	1,06E-03	4,01E-02						
POCP ("smog")	kg C_2H_4e	2,24E-03	3,11E-04	4,02E-04	2,96E-03	MND	0,00E+00	MND	3,61E-04	4,05E-04	1,41E-03	2,06E-04	1,54E-02						
ADP-elements	kg Sbe	8,35E-05	4,99E-06	7,92E-06	9,64E-05	MND	0,00E+00	MND	1,11E-06	7,15E-06	7,42E-05	1,57E-06	5,21E-04						
ADP-fossil	MJ	1,78E+02	3,33E+01	4,73E+01	2,59E+02	MND	0,00E+00	MND	3,00E+01	4,73E+01	1,19E+02	1,90E+01	1,92E+02						

VERIFICATION STATEMENT

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online

This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

VERIFICATION STATEMENT

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and referencest and ard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experienceofconstructionproducts, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited 08.02.2024

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN15804+A2 & ISO14025 / ISO21930

